Tutorial 3

Throughout, V is a finite-dimensional inner product space.

1. Let U_{1} and U_{2} be subspaces of V. Show that

$$
\left(U_{1}+U_{2}\right)^{\perp}=U_{1}^{\perp} \cap U_{2}^{\perp}
$$

2. Let $T \in \mathcal{L}(V)$ and suppose $\mathbb{F}=\mathbb{C}$. Show there exists unique $A, B \in \mathcal{L}(V)$ such that A and B are self-adjoint and $T=A+i B$.
3. Let $T \in \mathcal{L}(V)$ be such that $T^{*} T=0$. What can you conclude about T ?
4. Let $V=\mathcal{P}_{1}(\mathbb{R})$ be an inner product space with inner product

$$
\langle f, g\rangle=f(0) g(0)+f(1) g(1)
$$

Define $T \in \mathcal{L}(V)$ as

$$
T(a+b x)=b x
$$

(a) Find T^{*} explicitly and conclude that T is not self-adjoint.
(b) Let A be the matrix of T with respect to the standard basis $\{1, x\}$. Show that the conjugate transpose of A is equal to A even though T is not self-adjoint. How is this not a contradiction?
5. Let U be a subspace of V.
(a) Show that P_{U} is self-adjoint.
(b) Show that P_{U} is diagonalizable.
6. Let $T \in \mathcal{L}(V)$.
(a) Show that dim null $T^{*}=\operatorname{dim}$ null T and dim range $T^{*}=\operatorname{dim}$ range T.
(b) Suppose $T^{*} T=T T^{*}$. Show that null $T^{*}=$ null T and range $T^{*}=$ range T.
7. In this problem we will establish how to construct the least squares approximating line of a given collection of data points.

Suppose we have points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ in \mathbb{R}^{2} with the x_{i} all distinct. If there exists a line $y=m x+b$ going through these points then $y_{0}=m x_{0}+b, y_{1}=m x_{1}+b$, and so on. In other words,

$$
A v-y=0
$$

where

$$
A=\left(\begin{array}{cc}
x_{0} & 1 \\
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right), \quad v=\binom{m}{b}, \quad y=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

As such, asking whether there exists a line passing through all the above data points is equivalent to asking whether there exists $v \in \mathbb{R}^{2}$ such that $A v-y=0$.

Of course, there almost never exists a line that goes through all the data points. We define a least squares approximating line as a line that makes $\|A v-y\|$ (relative to the dot product) as small as possible. Recall that if we fix $v \in V$ and a subspace $U \subseteq V$, then $\|v-u\|$ subject to the condition $u \in U$ is minimal when $u=P_{U}(v)$.
(a) With the above in mind, find an inner product space V, a subspace U, and an element $v \in V$ such that $u=P_{U}(v)$ is the least squares approximating line for the data points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$.
(b) Show that $y=2 x+\frac{5}{3}$ is the least squares approximating line for the data points $(-1,0),(0,1)$, and $(1,4)$.

